最短路问题
目录
Dijkstra, Bellman-Ford && SPFA.
EOJ 3196 Wormholes #
其实就是判断图中是否有负环……SPFA 或者 Bellman-Ford 判负环。写的时候还不会 SPFA,所以这里用的 Bellman-Ford。
#include <bits/stdc++.h>
using namespace std;
const int N = 505;
const int M = 2550;
const int INF = 1e6;
int n, m, k, cnt, dis[N];
struct node {int u, v, w;}e[M<<1];
void add_edge(int uu, int vv, int ww)
{
e[cnt].u = uu;
e[cnt].v = vv;
e[cnt++].w = ww;
}
bool bellman_ford()
{
int i;
for (i = 1; i <= n; ++i) dis[i] = INF;
for (i = 1; i < n; ++i) {
bool flag = 0;
for (int j = 1; j <= cnt; ++j)
if (dis[e[j].v] > dis[e[j].u] + e[j].w) {
dis[e[j].v] = dis[e[j].u] + e[j].w;
flag = 1;
}
if (!flag) break;
}
for (i = 1; i <= cnt; ++i)
if (dis[e[i].v] > dis[e[i].u] + e[i].w)
return 1;
return 0;
}
int main()
{
int t, u, v, w;
cin >> t;
while (t--) {
cin >> n >> m >> k;
cnt = 1;
while (m--) {
cin >> u >> v >> w;
add_edge(u, v, w);
add_edge(v, u, w);
}
while (k--) {
cin >> u >> v >> w;
add_edge(u, v, -w);
}
cout <<(bellman_ford() ? "YES" : "NO") << endl;
}
return 0;
}
EOJ 3202 Roadblocks #
求次短路的模板题。用 dist
, dist2
分别保存最短路和次短路,用 Dijkstra 更新这两个数组,最后 dist2[n-1]
就是答案。
#include <bits/stdc++.h>
using namespace std;
const int N = 5010;
const int INF = 0x3f3f3f3f;
int n, m, dist[N], dist2[N];
struct edge {int to, cost;};
typedef pair<int, int> P;
vector<edge> g[N];
void dijkstra()
{
priority_queue<P, vector<P>, greater<P> > q;
fill(dist, dist + n, INF);
fill(dist2, dist2 + n, INF);
dist[0] = 0;
q.push(P(0, 0));
while (!q.empty()) {
P p = q.top(); q.pop();
int v = p.second, d = p.first;
if (dist2[v] <d) continue;
for (int i = 0; i < g[v].size(); ++i) {
edge &e = g[v][i];
int d2 = d + e.cost;
if (dist[e.to] > d2) {
swap(dist[e.to], d2);
q.push(P(dist[e.to], e.to));
}
if (dist2[e.to] > d2 && dist[e.to] <d2) {
dist2[e.to] = d2;
q.push(P(dist2[e.to], e.to));
}
}
}
}
int main()
{
int u, v, w;
while (cin>> n >> m) {
for (int i = 0; i < n; ++i)
g[i].clear();
for (int i = 0; i < m; ++i) {
cin >> u >> v >> w;
g[u-1].push_back((edge){v-1, w});
g[v-1].push_back((edge){u-1, w});
}
dijkstra();
cout <<dist2[n-1] << endl;
}
return 0;
}
EOJ 3197 Invitation Cards #
有编号 1 ~ P 的站点, 有 Q 条公交车路线,公交车路线只从一个起点站直接到达终点站,是单向的,每条路线有它自己的车费。 有 P 个人早上从 1 出发,他们要到达每一个公交站点, 然后到了晚上再返回点 1。 求所有人来回的最小费用之和。
去的时候比较容易,就是求单源最短路;回来时是求多点到单点的最短路,考虑反向建图,那么问题也化为求单源最短路。两次 SPFA 即可。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
const int INF = 0x3f3f3f3f;
typedef long long ll;
int n, m, head1[N], head2[N], dis[N], t1, t2;
bool vis[N];
struct node {int u, v, w, next;} edge1[N<<1], edge2[N<<1];
ll spfa(node edge[], int head[])
{
for (int i = 1; i <= n; ++i)
dis[i] = INF, vis[i] = 0;
queue<int> q;
q.push(1);
dis[1] = 0, vis[1] = 1;
while (!q.empty()) {
int u = q.front();
q.pop();
vis[u] = 0;
for (int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v;
if (dis[v] > edge[i].w + dis[u]) {
dis[v] = edge[i].w + dis[u];
if (!vis[v]) vis[v] = 1, q.push(v);
}
}
}
ll ans = 0;
for (int i = 1; i <= n; ++i)
ans += dis[i];
return ans;
}
void add_edge(int u, int v, int w)
{
edge1[t1].v = v;
edge1[t1].w = w;
edge1[t1].next = head1[u];
head1[u] = t1++;
edge2[t2].v = u;
edge2[t2].w = w;
edge2[t2].next = head2[v];
head2[v] = t2++;
}
int main()
{
int t, u, v, w;
cin >> t;
while (t--) {
cin >> n >> m;
t1 = t2 = 0;
memset(head1, -1, sizeof(head1));
memset(head2, -1, sizeof(head2));
for (int i = 0; i < m; ++i) {
cin >> u >> v >> w;
add_edge(u, v, w);
}
cout <<spfa(edge1, head1) + spfa(edge2, head2) << endl;
}
return 0;
}
计算最短路径条数 #
求出有 n (1 < n ≤ 100) 个结点有向图中,结点 1 到结点 n 的最短路径,以及最短路径的条数。 第一行有 2 个整数 n, m (0 < m < 3000),接下来 m 行每行有三个整数 u, v, w 结点 u 到 v 有一条权为 w 的边 (w < 1e5)。
Dijkstra 模板题 + 重边判定。cnt
数组记录最短路条数,same
数组记录原来边的条数(也就记录了重边条数)。
#include <bits/stdc++.h>
using namespace std;
const int N = 105;
const int INF = 0x3f3f3f3f;
int v[N], d[N], mp[N][N], cnt[N], same[N][N];
int n, m;
void init()
{
memset(same, 0, sizeof(same));
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
mp[i][j] = INF;
int u, v, w;
while (m--) {
scanf("%d%d%d", &u, &v, &w);
mp[u-1][v-1] = w;
++same[u-1][v-1];
}
for (int i = 0; i < n; ++i) {
d[i] = (i ? INF : 0);
cnt[i] = (i ? 0 : 1);
}
}
void dijkstra()
{
for (int i = 0; i < n; ++i) {
int x, now = INF;
for (int y = 0; y < n; ++y)
if (!v[y] && d[y] <= now)
now = d[x=y];
v[x] = 1;
for (int y = 0; y < n; ++y)
if (!v[y]) {
if (d[x] + mp[x][y] == d[y])
cnt[y] += cnt[x] * same[x][y];
else if (d[x] + mp[x][y] <d[y]) {
cnt[y] = cnt[x] * same[x][y];
d[y] = d[x] + mp[x][y];
}
}
}
}
int main()
{
cin >> n >> m;
init();
memset(v, 0, sizeof(v));
dijkstra();
if (d[n-1] == INF) d[n-1] = -1;
cout <<d[n-1] <<" "<< cnt[n-1] << endl;
return 0;
}